Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide

نویسندگان

  • Minhao Pu
  • Hao Hu
  • Christophe Peucheret
  • Hua Ji
  • Michael Galili
  • Leif K. Oxenløwe
  • Palle Jeppesen
  • Jørn M. Hvam
  • Kresten Yvind
چکیده

We experimentally demonstrate polarization-insensitive all optical wavelength conversion of a 10-Gb/s DPSK data signal based on four-wave mixing in a silicon waveguide with an angled-pump scheme. Dispersion engineering is applied to the silicon waveguide to obtain similar four-wave mixing conversion performances for both the TE and TM modes. Bit-error rate measurements are performed and error-free operation is achieved. We also demonstrate polarization-insensitive wavelength conversion with a large separation between the idler and signal using a dual-pump configuration. ©2012 Optical Society of America OCIS codes: (060.1155) All-optical networks; (190.4380) Nonlinear optics, four-wave mixing; (190.4390) Nonlinear optics, integrated optics; (130.7405) Wavelength conversion devices. References and links 1. C. M. Gallep, O. Raz, and H. J. S. Dorren, “Polarization independent dual wavelength converter based on FWM in a single semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Disgest (CD) (Optical Society of America, 2010), paper OWP2. 2. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010). 3. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18(10), 9961–9966 (2010). 4. J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006). 5. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12(11), 1916–1920 (1994). 6. F. Yaman, Q. Lin, and G. P. Agrawal, “A novel design for polarization-independent single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 18(22), 2335–2337 (2006). 7. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). 8. M. Pu, H. Hu, M. Galili, H. Ji, L. K. Oxenløwe, K. Yvind, P. Jeppsen, and J. M. Hvam, “15 THz tunable wavelength conversion of picosecond pulses in silicon waveguide,” IEEE Photon. Technol. Lett. 23(19), 1409– 1411 (2011). 9. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). 10. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). 11. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006). 12. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886– 19894 (2011). 13. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppsen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in a nano-engineered silicon waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011). 14. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010). #168156 $15.00 USD Received 8 May 2012; revised 27 Jun 2012; accepted 29 Jun 2012; published 3 Jul 2012 (C) 2012 OSA 16 July 2012 / Vol. 20, No. 15 / OPTICS EXPRESS 16374 15. M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011). 16. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion by timedomain optical Fourier transformation in a silicon nanowire,” Opt. Express 19(26), B825–B835 (2011). 17. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angledpolarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010). 18. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). 19. Q. Liu, S. Gao, L. Cao, and S. He, “Design of low-dispersion-discrepancy silicon waveguide for broadband polarization-independent wavelength conversion,” J. Opt. Soc. Am. B 29(2), 215–219 (2012). 20. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010). 21. P. O. Hedekvist and P. A. Anderson, “Noise characteristics of fiber-based optical phase conjugators,” J. Lightwave Technol. 17(1), 74–79 (1999).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarization Insensitive Wavelength Conversion Based on Four-Wave Mixing in a Silicon Nanowire

We experimentally demonstrate, for the first time, polarization-insensitive wavelength conversion of a 10 Gb/s NRZ-OOK data signal based on four-wave mixing in a silicon nanowire with bit-error rate measurements. OCIS codes: (190.4380) Nonlinear optics, four-wave mixing; (190.4390) Nonlinear optics, integrated optics; (230.7370) Waveguide; (130.7405) Wavelength conversion devices.

متن کامل

Phase-matching and Nonlinear Optical Processes in Silicon Waveguides.

The efficiency of four-wave-mixing arising from Raman and non-resonant nonlinear susceptibilities in silicon waveguides is studied in the 1.3 - 1.8microm regime. The wavelength conversion efficiency is dominated by the Raman contribution to the nonlinear susceptibility, and high conversion efficiencies can be achieved under the phase-matching condition. In this context, dispersion in silicon wa...

متن کامل

Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator.

We present a dispersion engineered slow light silicon-based photonic crystal waveguide PIN modulator. Low-dispersion slow light transmission over 18 nm bandwidth under the silica light line with a group index of 26.5 is experimentally confirmed. We investigate the variations of the modulator figure of merit, V(π) × L, as a function of the optical carrier wavelength over the bandwidth of the fun...

متن کامل

Nonlinear self-polarization flipping in silicon sub-wavelength waveguides: distortion, loss, dispersion, and noise effects.

We numerically investigate nonlinear self-polarization flipping in a silicon waveguide. We identify specific silicon waveguide geometries that enhance this effect to facilitate its fabrication and experimental demonstration by varying various parameters such as fabrication distortion, waveguide loss, dispersion and laser noise to design the silicon waveguide. In optimized waveguides, we show th...

متن کامل

Plasmon mode transformation in modulated-index metal-dielectric slot waveguides.

The concept of adiabatic mode transformation between silicon waveguide and surface plasmon-polariton modes in subwavelength metal-dielectric slots is investigated. The mode transformer consists of a modulated-index slot region, which is bound by two metal slabs. Using the design scheme, we will show that the optical dispersion of a modulated-index metal slot waveguide can be engineered well abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017